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Anomalous diffusion in a unidirectional random velocity field 
with long-range correlations 
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Research Institute for TbIheoretical Phyics, Univenity of Helsinki, Siltavuarenpenger 20 
C, SF-Wl70 Helsinki, Finland 

Received 31 October IW1, in final form 18 Februaly 1992 

AbstreeL The anomalous diffusion in a unidirectional random velocity field with long- 
range comlalions is analysed in direclions fransverse to the direction of lhe field or along 
the field direction. Critical values of the exponenu, which characlerize lhe power-like 
falloff of lhe correlations in the transvene and longitudinal directions, and the critical 
dimension of space are determined. ?he anomalous dimension of the longitudinal 
diffusion mefficient is also calculated in the first order of the rexpansion for several 
cases of long-range correlated random velocity field. 

1. Introduction 

In random media anomalous diffusion is determined by the structure and the range 
of correlations of the effective random drift field in which the diffusion takes place. 
Several spatial structures of the random convection field have been considered: it 
may be divergenceless corresponding to an incompressible solvent, it may be a purely 
potential vector field or contain both components in different proportions [l, 21, and in 
all these cases the correlations of the field may have, apart from the tensor structure, 
either short range (the correlation function is approximated by a delta function) or 
long - range - .  (power-like falloff of the correlation function) [3, 41. Therefore, there is 
also a large number of different universality classes characterized by different sets of 
the critical exponents, which, in particular, determine the power-like behaviour of the 
mean-square displacement in these models of diffusion. In addition to these features, 
the drift field may possess, in physically realizable cases, spatial anisotropy [5], which 
again drastically changes the asymptotic properties of diffusion in such random fields 
16, 71. 

in this paper iong-range generaiizations of a recently proposed is, 61 modei of 
diffusion in a unidirectional random field are considered, with superdifluusive asymptotic 
behaviour, i.e. the mean-square displacement of a tracer particle grows faster than 
linearly with time. The original model [5] and its generalizations [6, 71 belong to the 
class of models with divergenceless velocity field, but due to the anisotropic structure 
of the fields, they are in a different universality class than the models with spatially 
isotropic divergenceless velocity field [l-31. 

The original model is connected with the description of ground water transport in 
heterogeneous rocks [SI. The basic feature of the unidirectional wlocity field in this 
model is that it is independent of the coordinate along the field direction, whereas it 
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varies in an uncorrelated fashion in the transverse directions. In hvo dimensions the 
situation may be described as the diffusion in a Ruid Rowing along the stripes in a 
stratified structure with different permeabilities in each stripe. In higher dimensions 
the system consists of filaments instead of stripes parallel to the Row direction. The 
properties of diffusion in this unidirectional convection model and its generalizations 
(‘Manhattan grid’ convection) have recently been studied both analytically and numer- 
ically [6], and also by the method of the renormalization group (RG) [J. In particular, 
~~ it has been shown that the critical dimension of these mode!s k rlc = 3, and for a 
random convection field consisting of d‘ orthogonal unidirectional components, inde- 
pendent of the coordinate along the component direction, the critical exponent U of 
the mean-square displacement has been determined as U = (4 + d ’ -  d ) / 2 ( d ’  + 1) 
for an arbitrary dimension of space d < 3, and 1 < d‘ < d. 

In this paper, analogous results are obtained for generalizations of the unidirec- 
tional model to the case of long-range correlations. Three different possibilities are 
mnsidered: 

(i) the convection field is independent of the coordinate along the field direction, 
and has long-range correlations in the transverse directions; 

(ii) the convection field depends on all the coordinates, but the correlations along 
the field direction have a long range, whereas in the tranverse direction short-range 
correlations take place; 

have long range. 
Physically, (i) corresponds to the situation, in which the permeabilities of the 

layers or filaments cannot be regarded as totally uncorrelated, e.g. when the charac- 
teristic length scale of the changes in the permeability in the transverse directions is 
larger than the typical width of the filaments or layers; (ii) allows for the coordinate 
dependence nf the random field along its direction. In the filament picture this means 
that the permeability of each filament varies randomly along the filament direction. 
However, the randomness induced by the inhomogeneities is assumed to have long- 
range correlations to account for the larger length scale of the field variations along 
the field direction, than in the transverse directions, in which the correlations are as- 
sumed to be short ranged. In this case, the velocity field ceases to he divergenceless. 
The last case (iii) is a combination of (i) and (ii). 

The paper is organized as follows: in section 2 the field theory of the unidirec- 
tionally biased diffusion with long-range transverse correlations is constructed and its 
renormalization analysed. Generalizations of this model to the cases of long-range 
longitudinal with short-range transverse correlations and long-range correlations in 
all directions are discussed in sections 3 and 4, respectively. Section 5 is devoted to 
concluding remarks. 

(iUj ihe wiieiaiiOns, hOih in fie;; diiection and in ihe iianj-<eise ;iieiiions, 

2. Field theory of diffusion in a random unidirectional velocity field with long-range 
transverse correlations 

Consider a ddimensional continuum system with stationary random velocity field F 
in the z-direction: F = e , $ ( v ) ,  where the function @ is a function of the transverse 
yao rd ina te  only. The motion of a tracer particle at (z,y) may he described by the 
Langevin equations: 

d s / d l =  -+(VI + ~ 1 ( 1 )  
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d y , / d t =  ~ l , ( t )  n > 1 (1) 
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where the Gaussian noise 1) has zero mean and the correlation functions are 

q , ( t ) ~ , , , ( t ' )  = 2Sn,D,6(t - 1 ' )  D ,  = Dk D,  = DT n > 1 (2) 

where Dk is the bare (not renormalized) diffusion coefficient in the 2-direction, 
and DT is the bare transverse diffusion coefficient. The random field $ also has a 
Gaussian distribution with zero mean, and the correlation function is assumed to be 
locally integrable in the position space and to have a power-like behaviour at large 
separations of the field arguments, i.e. 

1 
IY - Y'I -+ IY - Y'12b 

(Il(Y)$(Y')) - 
Therefore, for 6 < ( d  - 1)/2 the Fourier transform of the correlation function 
hehave-s as ( + ( p ) I ( q ) )  - S ( p  + q) / (p2)(d-1) /2-b at small momenta, whereas for 
b > (d  - 1 ) / 2  we have ($(p)$(q)) - 6 ( p +  q )  in the same limit. Therefore, 
at the large distance limit we may replace the original correlation function by an 
effective one, which we obtain by taking the inverse Fourier transform of these limiting 
expressions, and we arrive at the following definition of the effective correlation 
function 

I A , , C ~ ( ~ - ~ ' )  0 < 6 < ( d - 1 ) / 2  

($(Y)$(Y')) = X ~ ~ ( Y - Y ' )  E A o c i ( ~ - ~ ' )  6 2  ( d - l ) / 2 ,  

Here, is the gamma function, and the (non-negative) bare coupling constant A, 
describes the strength of the disorder. For convenience, the coefficient of the power of 
the coordinate difference in the long-range correlation function has been chosen such 
that 2 2 * r ( b ) / ( 4 ~ ) ( d - 1 ) / * r ( ( d - 1 ) / 2 - b ) l y - y ' 1 2 b  + 6(y-y'), when b -, ( d - 1 ) / 2 .  
The latter case of short-range correlations has already been analysed 171, therefore 
we concentrate here on the case of long-range correlations. 

For the probability distribution f(t,x,y) of the tracer particle at the point 
( z , ~ )  in a fixed field $ we obtain the Fokker-Planck equation corresponding to the 
equations (1) and (2) in the form of the following diffusion equation 

We are interested in the Green function of this equation, averaged over the random 
field G, This stochastic problem may be cast into a field-theoretic form by the use of 
the functional-integral representation of the Green function 

G$ ( t - t ' ,  z-z', y, y') = / DpD@p( 1 ,  2 ,  y)+( t ' ,  d, y') exp [/d t d z  d y GL., p] . 
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The Green function averaged over the distribution (3), (G+), may be expressed as 
the Green function Go = (G+) of the fields 'p and of the field theory with the 
'action' 

i.e. as a functional integral over the three fields p, i. and li, 

" I d  A I  r , - I  ., 
U ~ ( L - - L  ,z-z',g-y') = J DpDi .D$pp( i ,x ,y~p~z  ,z ' ,y ' jexp(Sj .  

The graphical rules for the diagrammatic expansion of the Green function Go follow 
from expression (4) in the standard way [8, 91. It should be noted, however, that 
the field qh does not depend on the variables t and x, therefore in the Laplace- 
momentum representation of the averaged Green function there are no integrals over 
the Laplace variable and the momentum corresponding to the longitudinal coordinate 
I. 'lb determine the critical dimension of the field theory (4), we extend the two- 
scale approach proposed for critical dynamics [lo], to the present model with three 
different scales, and introduce for each variable U three scaling dimensions d; ,  dk ,  
and d: corresponding to time, longitudinal and transverse coordinates, respectively. 
The scaling dimensions of all variables are determined from the condition that the 
action (4) is invariant under scale transformations with respect to time, longitudinal, 
and transverse coordinates separately. We are interested in a scale transformation, 
in which the bare propagator go of the field theory (4) in the Laplace-momentum 
representation 

k a homogeneous function of order -2 of its Laplace and momentum arguments 

g o ( A 2 s , A k , A p )  = A - 2 g o ( ~ , k , ~ ) .  (5) 

The total scaling dimension of a variable U in such a scale transformation is therefore 

d, I 2d:  + df; + d:. 

Fbr example. for the diffusion coefficients we obtain dbT = dbL = I ,  dbT  = d z L  = 
0, and dbL = d z T  = -2, which yield for the total dimensions the value d D L  = 
d,, = 0. The scaling dimensions of hare and renormalized diffusion coefficients 
are the same, therefore we have omitted the subscript '0' in the preceding formulae. 
This is not so in the case of the coupling constant, therefore the subscript must 
be. retained. For the coupling constant A, we obtain d i 0  = 2, d t o  = -2, and 
d I o  = -26, therefore d A o  = 2( 1 - b), from which it follows that the total dimension 
of the coupling constant vanishes, when 6,c = 1. Usually this condition determines 



Anomalous diffusion in a unidirectional random velociy fieki 3119 

the (upper) critical dimension of the model, but we see that there is no critical 
dimension in the case of algebraically decaying correlations (3), rather a critical value 
of the exponent b, which characterizes the falloff of the correlations, is determined 
by the condition dAo = 0,  regardless of the space dimension. 

Power counting in the graphs shows that the field theory (4) at the critical value 
of b b, = 1 is not only renormalizable, but even super-renormalizable, ie. it only 
possesses a finite number of superficially divergent graphs. l3 determine whether a 
model is renormalizahle or not, it is customary to calculate the degree of divergence 6 
of one-particle irreducible ( P I )  graphs of the model, and usually 6 is equal to the to 
total dimension defined as the total dimension of the graph in the Laplace-momentum 
representation. In our case, however, there are no integrals over the Laplace variables 
and longitudinal momenta in the non-vanishing graphs of the model, therefore the 
actual degree of divergence 6' is determined by the integrals over transverse momenta 
only. Power counting of the transverse momenta in an arbitrary 1PI graph yields for 
the degree of divergence in the transverse momentum space 6, = 6' the expression 

6 '=  d -  1 - ( 2  - L)V - ( d -  3 ) N ,  - LN+ (6)  

where V is the number of interaction vertices in the graph, and N,, N$ are the 
numbers of external 'p and @ legs of the graph, respectively. At the critical value 
b = 1 we obtain 6' = d - 1 - V - ( d  - 3 ) N ,  - N + ,  and the coefficient of V 
does not vanish, although it usually does in a critical theory. The reason is that 
6' characterizes large-momentum behaviour of the integrals corresponding to the 
graphs of the perturbation expansion, but we are eventually interested in the small 
momentumsmall Laplace variable behaviour conforming to the scaling (5). In the 
scale transformation s - A 2 s ,  k + A k ,  p + Ap, the original (transverse) large- 
momentum cutoff Q, which has a fixed value related to the minimal physical length 
1 - 1/Q of the problem, is replaced by Q / A .  For small A this may lead to 
divergences at large momenta in the graphs of the rescaled model, and therefore 
the large-momentum behaviour of the corresponding integrals has to be analysed. 
However, in the limit A + 0, the longitudinal momentum factors at the vertices 
compensate for the large-momentum divergences of the rescaled model, which has to 
be taken into account in the investigation of the applicability of the usual perturbation 
expansion in the small momentum limit. When the scaling dimension of the bare 
coupling constant dAo is positive, the effective (rescaled) coupling constant remains 
small at small A ,  whereas for d A o  < 0 the effective coupling constant grows as a 
positive power of l / A .  The borderline value dAo = 0 corresponds to the case, when 
the small-scale divergences are logarithmic and therefore related to the large-scale 
logarithmic divergences, which can be dealt with by the standard methods of the 
quantum field theory. Therefore, the analysis of the large-momentum divergences of 
the model has to be carried out at the critical value 6, = 1 instead of 6 = 2, which 
corresponds to logarithmic divergences in the I P I  vertex graphs of the model. 

The bare propagator go is retarded, therefore all graphs with closed loops of 
more than one go vanish (these are the only graphs, which formally contain integrals 
over the Laplace variable and longitudinal momenta). The closed loop with one bare 
propagator, which corresponds to the integral J d s  dkdpkg, (s ,  k , p ) ,  vanishes, since 
the integrand is an odd function of the longitudinal momentum k. In particular, there 
are no graphs corresponding to [PI Green functions with @-legs only, therefore N, 
1 always. One could worry about the coelficient d -3  at N , ,  which, at least formally, 
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could lead to an infinite number of types of superficially divergent graphs (i.e. graphs 
with 6' 2 0) below three dimensions. However, it is not difficult to see that, as in the 
short-range case [7], there is only one superficially divergent graph in the model: the 
1-loop self-energy graph. Let us denote by I,@ the number of go-propagators in an 
arbitrary  PI graph of the model, then from V = I,+ + N ,  we obtain the relation 
V 2 N, + 1 for all 1PI graphs, where the equality is achieved only for fhe I-loop sev- 
energy qaph since it is the only IPI graph, which contains exactly one go-propagator. 
. n " a L L L u l r r , g  "LW "1CyUa1LLy "L U1G IGI'lLIVII I",, WG 1111" L l l d l  ,"I all gr'iprrs "IC aLLUal 

degree of divergence has the upper bound 6' < d + 3 - b - ( d  - 1 - b)  N ,  - bN+. At 
the critical value b = 1 and for N ,  2 1 we see that 6' = 0 for the 1-loop self-energy 
graph, and 6' < 0 for all other 1Pi graphs, which, consequently, are superficially 
convergent. Here we have assumed that d > 2, which is a natural condition, since 
there is not much sense in dividing the position vector in longitudinal and transverse 
components below two dimensions. 

Hence, in the minimal subtraction scheme there is only one renormalization con- 
stant 2, and the renormalized action may be written in the form 

C..L^t:r..+:"" .L:" :"nn..nl:*, :" +I." *-, "Le.. I<\ ... ̂ &..A .I.̂ . c-- - 1 8  -- ....I." I..̂  I 

where we have introduced the renormalizcd diffusion constants D'. and D T ,  renor- 
malized coupling constant A, and a scale-setting parameter p of dimension of trans- 
verse momentum in order to make the renormalized coupling constant dimensionless 
",,"Cl YlC -x.LLIC L I Y I I I I " . I I I ' , L I " I I  (a,. ,ut, y"."""LC, r U "CIUIC" m a  5 - *\L - v,.  1'1 

general, the parameters X and D differ from their bare counterparts at most by a 
finite renormalization factor, but in the minimal subtraction scheme AIL' = A, and 
D = Do, whereas Dk = ZDL. In practical calculations, it is convenient to use the 
basic acfion S,, the expression for which is obtained from (7) by setting 2 = 1. The 
renormalized action is then the sum of the hasic action and the counlerfems, which 
arise in the course of the renormalization of the model to cancel the (ultra-violet) 
divergences. 

The only superficially divergent IPI  graph yields the following contribution to the 
'self-energy' function C( k , p )  (in terms of the basic action) 

. . n A n r  tho  o m l a  tronrCrrrmn+:nn /<\ T h o  n - r ~ m ~ + a r  ir  r l n f i m a r l  nr - qf? I.\ In 

where we have set the external transverse momentum equal to zero. Due to the 
super-renormalizability of the model, the one-loop expressions for the renormaliza- 
tion constant 2, the anomalous dimension y of the longitudinal diffusion melficient 
and the beta function extracted from (8), are perturhatively eracl in the minimai 
subtraction scheme, which is used here. It should be noted that the asymptotic 
behaviour of the model is not determined by the coupling constant A,  but by a to- 
tally dimensionless expansion parameter U, which is dimensionless with respect to 
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time, longitudinal and transverse coordinates, separately. From an inspection of the 
perturbation expansion, we infer the following expression for the parameter U 

= A J D ~ D ~ .  

In terms of this parameter, we obtain from (8) 

iid- U z=1--  
& 

where we have introduced the quantity 

(9) 

The renormalized parameter D L  becomes scale-dependent, which is described by the  
quantity 

called the anomalous dimension of the parameter DL, Le. the anomalous dimension 
of the longitudinal diffusion coetkient. In the definition (10) the subscript denotes 
that the derivative is taken at k e d  values of the bare parameters DOT, Dk and A,. 
The asymptotic behaviour of the model is determined by the beta function, which is 
of the form 

P ( u )  E p- = U[-€ - - / ( U ) ]  = U ( - &  + l<d - lu ) .  (11) :;Io 
Dimensional analysis yields for the renormalized Green function G the relation 

lbgether with the basic RG equation 

which expresses the independence of the Green function Go of the arbitrary scaling 
parameter p, the relation (12) leads to the equation 

from which the asymptotic behaviour of thc renormalized Green function G may be 
inferred. 
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If the running coupling constant ti is considered as a function of time, then the 
exact expressions (IO) and (11) yield the solution of equation (13) in a closed form: 

where Z and E are the first integrals of the equation (13): 

and 

Tho hat- C . . n r t : n n  /11\ h-0 h x m  m a r n o  / f i u n A  nn:n+r nf rhn o r \ .  rho P$..rr:nn fi-nr 
X 1 . U  "1- L".IL..LI".I \", .I"* L-" U L " 0  \,mu" p"LL1L" "L L.IY ""I. L L l L  uL."m,a,, ,,,: 
point U &  = 0 and the non-trivial futed point U* = of which the former is 
infrared stable for 1 < 6 < ( d  - 1)/2,  and the latter for 6 < 1, as may be seen 
from (16). where a + 0 in the limit t - 00, when E = 2(1 - 6) < 0, whereas 
ii + e/KdW1, when e > 0. Therefore, the asymptotic behaviour for correlations 
which decay rapidly enough corresponds to the usual diffusion, whereas for slowly 
falling-off correlations the anomalous behaviour govemed by the non-trivial fixed 
point U* occurs. Corrections to the usual diffusion result at b = 1 logarithmic. 

From the relations (14)-(16) it follows that in the transverse directions the diffu- 
sion, as described by the the long-time behaviour of the mean-square displacement, 
is normal, whereas for 0 < 6 < 1 the anomalous dimension of the longitudinal diffu- 
sion coefficient has a non-trivial value: y E y(u*) = - E ,  which, in particular, implies 
that in the longitudinal direction the behaviour of the mean-square displacement is 
superdiffusive: by definition (z2( t ) )  = j d z  dy C ( t ,  z,y; p ,  U', D', U), and using 
the equations (14)-(16) we arrive at the relation 

.. . .  

$ *?hich t\e pe:to:ba$;e-!y exact is t G e  =fire that the 
higher order terms of the eexpansion of the power of t vanish identically. The 
relation (17) determines the value of the exponent v, defined by (z2( t ) )  - 1'" , as 
v = 1 - 612. At 6 = 1 the mean-square displacement grows as 

=f :he p=.As-: 2 = '. 

- 
(zZ(t)) - t I n  1.  

At the limit b - ( d  - 1)/2,  the value of the exponent v coincides with that for the 
case of short-range correlations [7]. This is not at all a trivial fact in the isotropic 
case [3],  and here it occurs due to the super-renormalizahility of the field theory. 
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3. Diffusion in a unidirectional random field with longitudinal long-range correla- 
tions 

In the case of diffusion in a random unidirectional velocity field with long-range 
correlations along the direction of the field Bow, the overall setup of the problem is 
the Same as in the previous section. However, the random field 1/, now also depends 
on the longitudinal coordinate, and this has the important physical consequence. that 
the effective velocity field F = e,+(z,u) ceases to be divergenceless. The correlation 
function has the asymptotic behaviour 

and is assumed to be locally integrable with respect to the longitudinal coordinate 2- 
z’. Arguments similar to those of the preceding section allow the original correlation 
function to be replaced by an effective one of the form 

($(I,Y)~/,(z‘,Y‘)) = 2A06(z- ~ ’ ) 6 ( l ~ -  ?J’) &C~(X- Z‘,Y -y’) a 3 4 
Here, the long-range correlation function has been chosen such that in the limit 
a - 0 we recover the correlation function of the original problem with unidirectional 
mnvection 171. Also, due to the factor 2 in the short-range correlation function, the 
function C2 is a continuous function of the parameter a in the limit a - f .  

In the long-range case we obtain for the dimensions of the hare coupling constant 
A, the values d i 0  = 2, d i 0  = -2 - 2 a ,  and dTo = 1 - d, and therefore dAo = 
3 - 2a - d. In this case the model has the usual critical dimension d, = 3 - Za, and 
we choose E = 3 - 2 a  - d. The random field + is now a function of all the spatial 
coordinates, therefore the longitudinal momentum integrals are also present. The 
actual degree of divergence 6’ now takes into account longitudinal momenta both in 
the propagators and in the vertices (the latter factorize at the external legs), thus 

6 ’ =  d -  i V ( 3 - 2 ~ 1  - d )  - ( d -  1)N, - f ( d -  1 + 2 a ) N 1 1 , .  (18) 

From here it follows that the model is rcnormalizahle but not super-renormalizable: 
it has an infinite set of superficially divergent graphs, since at the critical dimension 
d = 3 - Za the number of vertices V disappears from the reiation (is). Moreover, 
apart from the superficially linearly divergent self-energy graphs, the vertex graphs 
corresponding to the IPI  Green function also possess logarithmic divergences, 
and the renormalization of the model requires two renormalization constants Z and 
Z,, which enter the  renormalized action in the following way 
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where we have introduced the renormalized parameters in the same fashion as in the 
relation (7). 

We chwse the bare contribution to the 1PI vertex function r ~ ( t , p ) ~ . ( - b , n ) ~ ( - p - ~ ~  
in the form r o ( s , k , p , q )  = ik, where s is the Laplace variable, and k is the 
longitudinal momentum flowing in the p leg of the graph, and p and q are the 
transverse momenta flowing in its ~p and ip legs, respectively. In the limit of small 
momenta, the 1-loop contribution to the vertex function is then (in terms of the basic 
action) 

+ O ( P )  = -  2d-?+?a + / 2 (  g T ) ( d - I ) / ? (  DL)l tas(3-d-Za) /?  
i kXpea r (3 /2  - a)1 ' ( (3  - d - 2 a ) / 2 )  

from which we obtain 

and 

The 1-loop contribution to the self-energy is 

from which 

t 
(1 - 2 a ) r ( 3 / 2  - a ) u  

T 3 ~ 2 - a E  
z=1-  

and 

( 1  - 2 a ) r ( 3 / ~  - 
+ , , ,., r ( u )  = - T 3 / 2 - *  

The beta function now contains both ys 

P = 7~r-c + 27l(7~) - (1  + a h ( u ) l  ( 2 ' )  

and the futed-point equation no longer fies the anomalous dimcnsion y = ? ( U ' )  to 
all orders in E .  From (19), (20) and (21) we obtain to the order O(u?) 
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from which it follows that helow the critical dimension d < d ,  = 3 - 2a there is an 
infrared stable fixed point of the RG: U* = n 3 / 2 - a ~ / ( l  - a)( i  + 2a)r (3 /2  - C L ) ,  at 
which the anomalous dimension of the longitudinal diffusion coefficient is equal to 

(1 - 2 a ) E  

(1 - a ) ( l +  2 a )  
y = -  + O ( E 2 )  

leading to superdiffusive behaviour, and at the critical dimension logarithmic correc- 
tions to normal diffusion take place 

(.2(1)) - t 1 + ( 1 - 2 ~ j ~ / 2 ( 1 - ~ ) ( 1 + 2 ~ )  (22) 

(23) 

(1 < 3 - za 0 < a < ; 
(220) m t ( l n  t)(1-2a)/(’-aj(’+2“) d = 3 - 2a 0 < a < i 
whereas above the critical dimension the diffusion is normal. Expressions (22) and 
(U) assume the values of the short-range unidirectional convection problem [7] in 
the limit a - 0, and the anomalies mnish in the other interesting limit (I - 1/2.  In 
the tramverse directions thc diffusion is normal regardless of the values of n ,  b and 
d. 

4. Diffusion in a random field with long-range longitudinal and transverse cormla- 
tions 

The problem of diffusion in a unidirectional random velocity field with long-range 
correlations in both longitudinal and transverse directions is described by the random 
field +(z,y) with the pair correlation function locally integrable with respect to 
longitudinal and transverse coordinates separately and with the asymptotic behaviour 

1 
(+(z>y)~(z’>y’ ) )  - I+ - ,.lZaly - U112b Iz - 1’1 - Co (y- y‘l i Co. 

For a < 4 and 6 < ( d  - 1) /2  we replace, by analogy with the preceding treatment, 
the original correlation function by an effective one of the form 

(+(z>Y)+(z’,Y’)) = X,C,(~ - Z ’ , U  - U‘) 
- 2’*r(b)(  1 - 2a)X,  - - 

( 4 n ) ( d - w 2 r ( ( , i  - I ) / ?  - b) l z  - q q y  - y’12b 

0 < <I < + 0 < b <  ( r l -  1) /2 .  

We only consider here this correlation function, since the cases corresponding to 
other possible values of the exponents CL and b reduce to the problems treated in the 
preceding sections. 

The dimensions of the bare coupling constant are d i 0  = 2, rl& = -2 - 2n, and 
dxo = -26, therefore d A o  = 2(  1 - a - 6). Thus, there is a critical line II + b = 1 in 
the space of the parameters a and 6, but no critical dimension of the position space 
in this case. We define E = 2(  1 - a - b). Power counting yields for the actual degree 
of divergence the expression - 

6’ = d - ( 1  - a - 6)V - ( d  - 1)N, -(a + b ) N +  
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from which it follows that in the generic case there is a superficially linearly divergent 
two-point function r - and a logarithmically divergent three-point function rv++ in 
the model. At two dimensions the four-point function Tyava also has a degree of 
divergence equal to zero indicating a possible logarithmic divergence. However, at two 
dimensions at least one of the conditions n < and b < (d-1) /2  cannot be fulfilled, 
consequently, in the effective correlation function the corresponding power function 
has to be replaced by a delta function, and we return to one of the previous cases, in 
which there are no difficulties with the higher order Green functions. Consequently, 
there are only two effectively logarithmically divergent Green functions in the model, 
and two renormalization constants suffice to make the model finite. The renormalized 
action is 

Y V  

+ 4 1 di dx d v  ip(i, z ,v )y i ( z ,~ )&( i ,  x c , v ) .  

Choosing the bare part of the IPI  vertex function rv(~,p)+(-l.,.r)+(-p-rl) in t he  form 
r o ( s , k , p , q )  = ik, we obtain the 1-loop contribution to the vertex function at small 
momenta (in terms of the basic action) in the form 

and the contribution to the self-energy in the form 

In the relations (24) and (25) there are two natural choices of the totally dimensionless 
expansion parameter: A(  DT)-*( DT,)6-2, which corresponds to the parameter j& 

of the dimension of the longitudinal momentum, and A(  D T ) a - l (  U'-)-'-", which 
corresponds to p of the dimension of the transverse momentum. Wc choose the 
latter possibility and define 

x 
( D T ) I - o ( D L  I + " '  1 

U =  
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In terms of this parameter, the renormalization constants are 

where we have defined 

Equations (26) yield 

r l ( u )  7 U E U  + , . .  y(u) = -(I - 2 a ) E u + . . .  

The beta f!!nctlon From (26) and (27) is of the form 

b'= ~ [ - - ~ + 2 y ~ ( u ) - ( 1 + a ) y ( u ) ] =  1 ~ [ - - ~ + ( 1 - a ) ( l + ~ n ) E u + O ( 2 1 * ) ]  

(27) 

from which it follows that for a + 6 < 1 there is an infrared stable fwed point of the 
RG U* = E / (  1 - a ) (  1 + 2 a ) E ,  at which the anomalous dimension of the longitudinal 
diffusion coefficient is formally the same as in the preceding section (the parameter 
E = 2j1 - a  - b j  is different irom that in the previous sections) 

(1 -2a)E  
(1 - a ) ( l +  2 a )  

y = -  + O ( 2 )  

leading to superdiffusive behaviour, and at the critical line a + 6 = 1 logarithmic 
corrections to normal diffusion occur: 

(.2(1)) ~ 1 ~ + ( ~ - 2 ~ 1 ~ / 2 ( ' - ~ 1 ( 1 + 2 . )  a + b < 1 0 < a < ; 
0 < b < ( d - 1 ) / 2  

(Iz(1)) Y t ( ln  1 ) ( ' - * 4 l ( ' - 4 ( ' + 2 " )  (1 + b = 1 0 < a < + 
fi / I  . I ,  3 1 , "  
U \ U \ ( U -  ')[A 

whereas for a + 6 > 1, a < 4, and 6 < ( 1 1  - 1) /2  the diffusion is normal, as is also 
the case in the transverse directions for all values of a and b. 

5. Conclusion 

In this paper a renormalization group analysis has been carried out of three gen- 
eralizations of the recently proposed model of diffusion in a random unidirectional 
velocity field [5, 61. The cases of: (i) a random field independent of the coordinate 
along the velocity direction and long-range correlations in the transversc directions; 
(ii) a random field with long-range corrclations in the direction of the velocity and 
short-range correlations in the transverse directions; and (iii) a random field with 
long-range correlations in both the longitudinal and transvcrse directions, have been 
considered. The critical values of decay exponents of the correlation function and 
the critical dimension have been determined, and the anomalous dimension of the 
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longitudinal diffusion coeliicient has been calculated in the leading order of the E ex- 
pansion. In the case of a random field independent of the coordinate in the velocity 
direction the results are perturbatively exact. 

In all cases the anomalous behaviour is superdiffusive with the following long-time 
asymptotics of the mean-square displacement of a tracer particle in the longitudinal 
direction: 

(i) for 0 < b < ( d  - 1) /2 ,  (220) t2-*, if b < 1 and (.2(1)) - I l n  t ,  when 
b = 1; these results are exact in the &expansion. 

(ii) For 0 < a < i, (.2(1)) - 11t(1-2~)c~z(1-a)(1t2a), when d < 3 - 2n and 

(iii) For 0 < a < ;, 0 < b < ( d -  1) /2 ,  (.2(t)) - t 1 + ( 1 - 2 ~ ) c / 2 ( 1 - ~ ) ( ' t 2 ~ ) ,  when 

For other values of the parameters a, b and d the diffusion in the biased direction 
:he iiaiij-<eise c;&ytions c;i;fiisi(jn 

(.2(1)) - i ( l n  i ) (1-2a) / ( ' -~) (1+2~) ,  if d = 3 - 2a. 

a + b < 1 and (.2(1)) - t ( l n  1 ) ( ' - 2 L ) / ( ' - a ) ( ' t 2 " ) ,  if a + b = 1. 
~ 

& iioK,a;: ($($)) - 1, n(jriiiai ic:garijiess of 
the values of a, b and d. 
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