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Abstract. The anomalous diffusion in a unidirectional random velocity field with long-
range correlations is analysed in directions transverse to the direction of the field or along
the field direction. Critical values of the exponents, which characterize the power-like
falloff of the correlations in the transverse and longitudinal directions, and the critical
dimension of space are determined. The anomaious dimension of the longitudinal
diffusion coefficient is also calculated in the first order of the c-expansion for several
cases of long-range correlated random velocity field.

1. Introduction

In random media anomalous diffusion is determined by the structure and the range
of correfations of the effective random drift field in which the diffusion takes place.
Several spatial structures of the random convection field have been considered: it
may be divergenceless corresponding to an incompressible solvent, it may be a purely
potential vector field or contain both components in different proportions [1, 2], and in
all these cases the correlations of the field may have, apart from the tensor structure,
either short range (the correlation function is approximated by a delta function) or
long range (power-like falloff of the correlation function) (3, 4]. Therefore, there is
also a large number of different universality classes characterized by different sets of
the critical exponents, which, in particular, determine the power-like behaviour of the
mean-square displacement in these models of diffusion. In addition to these features,
the drift field may possess, in physically realizable cases, spatial anisotropy {5], which
again drastically changes the asymptotic properties of diffusion in such random fields
67 .

In this paper long-range generalizations of a recently proposed [5, 6] model of
diffusion in a unidirectional random field are considered, with superdiffusive asymptotic
behaviour, ie. the mean-square displacement of a tracer particle grows faster than
linearly with time. The original model [5] and its generalizations [6, 7} belong to the
class of models with divergenceless velocity field, but due to the anisotropic structure
of the fields, they are in a different universality class than the models with spatially
isotropic divergenceless velocity field [1-3].

The original model is connected with the description of ground water transport in
heterogeneous rocks [5]. The basic feature of the unidirectional velocity ficld in this
model is that it is independent of the coordinate along the field direction, whereas it
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varies in an uncorrelated fashion in the transverse directions. In two dimensions the
situation may be described as the diffusion in a fluid flowing along the stripes in a
stratified structure with different permeabilities in each stripe. In higher dimensions
the system consists of filaments instead of stripes parallel to the flow direction. The
propetties of diffusion in this unidirectional convection model and its generalizations
(‘Manhattan grid’ convection} have recently been studied both analytically and numer-
ically [6], and also by the method of the renormalization group (RG) [7]. In particular,
it has been shown that the critica] dimension of these models is d_ = 3, and for a
random convection field consisting of ¢’ orthogonal unidirectional components, inde-
pendent of the coordinate along the component direction, the critical exponent v of
the mean-square displacement has been determined as v = (4 + d' — &) /2(d’ + 1)
for an arbitrary dimension of space d < 3,and 1 < d’' < d.

In this paper, analogous results are obtained for generalizations of the unidirec-
tional model to the case of long-range correlations. Three different possibilities are
considered:

(i) the convection field is independent of the coordinate along the field direction,
and has long-range correlations in the transverse directions;

(ii) the convection field depends on ali the coordinates, but the correlations along
the field direction have a long range, whereas in the tranverse direction short-range
correlations take place;

(iii) the corrclations, both in the field direction and i
have long range.

Physically, (i) corresponds to the situation, in which the permeabilities of the
layers or filaments cannot be regarded as totally uncorrelated, e.g. when the charac-
teristic length scale of the changes in the permeability in the transverse directions is
larger than the typical width of the filaments or layers; (ii) allows for the coordinate
dependence of the random field along its direction, In the filament picture this means
that the permeability of each filament varies randomly along the filament direction.
However, the randomness induced by the inhomogeneities is assumed to have long-
range correlations to account for the larger length scale of the field variations along
the field direction, than in the transverse directions, in which the correlations are as-
sumed to be short ranged. In this case, the velocity field ceases to be divergenceless.
The last case (iii) is a combination of (i) and (ii).

The paper is organized as follows: in section 2 the field theory of the unidirec-
tionally biased diffusion with long-range transverse correlations is constructed and its
renormalization analysed. Generalizations of this model to the cases of long-range
longitudinal with short-range transverse correlations and long-range correlations in
all directions are discussed in sections 3 and 4, respectively. Section 5 is devoted to
concluding remarks.

2. Field theory of diffusion in a random unidirectional velocity field with long-range
transverse correlations

Consider a d-dimensional continuum system with stationary random velocity field F
in the z-direction: F = e_(y), where the function v is a function of the transverse
y-coordinate only. The motion of a tracer particle at (x,y) may be described by the
Langevin equations:

dz/dt = —(y) + m(t)
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dy,/dt=n,(t) =n>1 M
where the Gaussian neise 7 has zero mean and the correlation functions are
0, (O, (1) =26, D 8(1—1) D, = D§ D, = D n>1 (2

where DY is the bare (not renormalized) diffusion coefficient in the z-direction,
and D] is the bare transverse diffusion coefficient. The random field > also has a
Gaussian distribution with zero mean, and the correlation function is assumed to be
locally integrable in the position space and to have a power-like behaviour at large
scparations of the field arguments, i.e.

1

(Wwl(y')) ~ g

ly—y'| = co.

Therefore, for b < (d —~ 1)/2 the Fourier transform of the correlation function
behaves as (P{(p)v(q)} ~ 6(p + q)/(p?)4~1/2-% at small momenta, whereas for
b2 (d-1)/2 we have (¥(p)¥{(q)} ~ 8(p + q) in the same limit. Therefore,
at the large distance limit we may replace the original correlation function by an
effective one, which we obtain by taking the inverse Fourier transform of these limiting
expressions, and we arrive at the following definition of the effective correlation
function

o 22 (bYX
W) = GraEAN - D2 = e @

=XCily-v) 0<b<(d-1)/2

(B(y)b(y)) = Xb(y—¥") = A Ci{y —¥) b2 (d-1)/2.

Here, T is the gamuma function, and the (non-negative) bare coupling constant Ay
describes the strength of the disorder. For convenience, the coeflicient of the power of
the coordinate difference in the long-range correlation function has been chosen such
that 22 T(b) /(47)4-D/2P((d—1)/2—b)ly—v'|** — 6(y—v'), when b — (d—1)/2.
The latter case of short-range correlations has already been analysed [7], therefore
we concentrate here on the case of long-range correlations.

For the probability distribution P(t,z,y) of the tracer particle at the point
(x,y) in a fixed field i we obtain the Fokker-Planck equation corresponding to the
equations (1) and (2) in the form of the following diffusion equation

P(t,z,y) = L, P(t,z,y) = 0.

5 .ot o P
[E—DGW—DGW~¢’(M5§

We are interested in the Green function of this equation, averaged over the random
field v. This stochastic problem may be cast into a field-theoretic form by the use of
the functional-integral representation of the Green function

Gilﬁ(t"t’,m-l",y,‘y’) = fD(pD(,&(,O(i, :L‘,y)@(t’,xf,y") exp [fdtdm dy ‘-wa‘P:I .
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The Green function averaged over the distribution (3), (Gy), may be expressed as
the Green function G, = (G,;) of the fields o and @ of the field theory with the
‘action’

S= “51,\;]‘“’ dy" $(¥)C7 (y - ¥ ¥ly)

T 0 L 0
0

2 a
()-3_,‘.;3_ 2"'4’(;’;)% (p(t,l',y)

Jx

+ [dtdeaype,2,0)| £-D

@

ie. as a functional integral over the three fields o, ¢ and

Pl 4F S U S SN fn,r\-r\z [ N~
Goli-i, o=a,y—y) = | VoD@ Dvell, o, y)plt

i

Pl

@',y exp( S},

The graphical rules for the diagrammatic expansion of the Green function G, follow
from expression (4) in the standard way [8, 9]. It should be noted, however, that
the field 1) does not depend on the variables t and =z, therefore in the Laplace-
momentum representation of the averaged Green function there are no integrals over
the Laplace variable and the momentum corresponding to the longitudinal coordinate
. To determine the critical dimension of the field theory (4), we extend the two-
scale approach proposed for critical dynamics [10], to the present model with three
different scales, and introduce for each variable v three scaling dimensions d%, d%,
and dY corresponding to time, longitudinal and transverse coordinates, respectively.
The scaling dimensions of all variables are determined from the condition that the
action (4) is invariant under scale transformations with respect to time, longitudinal,
and transverse coordinhates separately. We are interested in a scale transformation,
in which the bare propagator g, of the field theory (4) in the Laplace-momentum
representation

1
s+ Dyk? 4+ DIp?

90(3, k!?) =

is a homogeneous function of order ~2 of its Laplace and momentum arguments
9o(A%s, Ak, Ap) = A™2gy(s,k,p). ©)

The total scaling dimension of a variable v in such a scale transformation is therefore
d, =2d5 + dv + d}.

For example, for the diffusion coeflicients we obtain dfyr = dL = 1, d‘bT = d’gL =
0, and dby, = d}r = -2, which yield for the total dimensions the value dp. =
dp. = 0. The scaling dimensions of bare and renormalized diffusion coefficients
are the same, therefore we have omitted the subscript ‘0’ in the preceding formulae.
This is not so in the case of the coupling constant, therefore the subscript must
be retained. For the coupling constant A, we obtain d§, = 2, d% = -2, and
d}, = —2b, therefore d, = 2(1—b), from which it follows that the total dimension
of the coupling constant vanishes, when b.c = 1. Usually this condition determines
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the (upper) critical dimension of the model, but we see that there is no critical
dimension in the case of algebraically decaying correlations (3), rather a critical value
of the exponent b, which characterizes the falloff of the correlations, is determined
by the condition d, = 0, regardless of the space dimension.

Power counting in the graphs shows that the field theory (4) at the critical value
of b b, = 1 is not only renormalizable, but even super-renormalizable, ie. it only
possesses a finite number of superficially divergent graphs. To determine whether a
model is renormalizable or not, it is customary to calculate the degree of divergence &
of one-particle irreducible (1p1) graphs of the model, and usually § is equal to the to
total dimension defined as the total dimension of the graph in the Laplace-momentum
representation. In our case, however, there are no integrals over the Laplace variables
and longitudinal momenta in the non-vanishing graphs of the model, therefore the
actual degree of divergence &' is determined by the integrals over transverse momenta
only. Power counting of the transverse momenta in an arbitrary 1Pl graph yields for
the degree of divergence in the transverse momentum space 64 = 4’ the expression

§=d—1-(2-0)V —(d—3)N, —bN, (6)

where V' is the number of interaction vertices in the graph, and N, N, are the
numbers of external ¢ and + legs of the graph, respectively. At the critical value
b=1weobtain §' = d—-1-V —(d—3)N, - Ny, and the coefficient of V'
does not vanish, although it usuaily does in a critical theory. The reason is that
&' characterizes large-momentum behaviour of the integrals corresponding to the
graphs of the perturbation expansion, but we are eventually interested in the small
momentum-small Laplace variable behaviour conforming to the scaling (5). In the
scale transformation s — A%s, & — Ak, p — Ap, the original (transverse) large-
momentum cutoff @, which has a fixed value related to the minimal physical length
I ~ 1/Q of the problem, is replaced by Q/A. For small A this may lead to
divergences at large momenta in the graphs of the rescaled model, and therefore
the large-momentum behaviour of the corresponding integrals has to be analysed.
However, in the limit A — 0, the longitudinal momentum factors at the vertices
compensate for the large-momentum divergences of the rescaled model, which has to
be taken into account in the investigation of the applicability of the usual perturbation
expansion in the small momentum limit. When the scaling dimension of the bare
coupling constant d,  is positive, the cffective (rescaled) coupling constant remains
small at small A, whereas for d, < O the effective coupling constant grows as a
positive power of 1/A. The borderline value ¢, = 0 corresponds to the case, when
the small-scale divergences are logarithmic and therefore related to the large-scale
logarithmic divergences, which can be dealt with by the standard methods of the
quantum field theory. Therefore, the analysis of the large-momentum divergences of
the model has to be carried out at the critical value b, = 1 instead of b = 2, which
corresponds to logarithmic divergences in the IPI vertex graphs of the model.

The bare propagator g, is retarded, therefore all graphs with closed loops of
more than one g, vanish (these are the only graphs, which formally contain integrals
over the Laplace variable and longitudinal momenta). The closed loop with one bare
propagator, which corresponds to the integral f dsdkdpkgy(s, k,p), vanishes, since
the integrand is an odd function of the longitudinal momentum k. In particular, there
are no graphs corresponding to 1p1 Green functions with v-legs only, therefore N >
1 always. One could worry about the coefficient d —3 at N, which, at least formally,
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could lead to an infinite number of types of superficially divergent graphs (i.e. graphs
with &’ > 0) below three dimensions. However, it is not difficult to see that, as in the
short-range case [7], there is only one superficially divergent graph in the model: the
1-loop self-energy graph. Let us denote by I, the number of g,-propagators in an
arbitrary 1r1 graph of the model, then from V= I,; + N, we obtain the relation
V 2 N, +1 for all 1p1 graphs, where the equality is achieved only for the I-loop self-
energy graph since it is the only 1P1 graph, which contains exactly one gD propagator

Cubotitinting inan walo bsoe e,

SUOSUTUIIng this uw\.lualuy in the relation \U), we find that for all gldpub the actual
degree of divergence has the upper bound &' < d+3-b—-(d—1-b)N,—-bN,. At
the critical value b = 1 and for N, > 1 we see that §' = 0 for the 1- loop self- energy
graph, and &’ < O for all other 1P1 graphs, which, consequently, are superficially
convergent. Here we have assumed that d > 2, which is a natural condition, since
there is not much sense in dividing the position vector in longitudinal and transverse
components below two dimensions.

Hence, in the minimal subtraction scheme there is only one renormalization con-
stant Z, and the renormalized action may be written in the form

1
Sp = ———— [ dydy' vyt
R 2)\“5]@1!”011&

d [ a T32 La’z r).l
-I—/ id:vdycpla——D 57~ 2P w—w(y)a—me ™

where we have introduced the renormalized diffusion constants D% and DT, renor-
malized coupling constant A, and a scale-setting parameter p of dimension of trans-
verse momentum in order to make the renormalized coupling constant dimension]ess

wndar tha crala trancfarmatinm /5Y Tha naramatar « ic dafinad ac ¢ — 91 _ Tn
uliuvl uiv 3Xdib ualsiUililauiui \J} 106 paidifiviCh € 15 UCHIGCA a5 & = 21 u} il

general, the parameters A and D differ from their bare counterparts at most by a
finite renormalization factor, but in the minimal subtraction scheme Au® = A, and
D = D,, whereas D} = ZDU. In practical calculations, it is convenient to use the
basic action Sy, the expression for which is obtained from (7) by setting Z = 1. The
renormalized action is then the sum of the basic action and the counterterns, which
arise in the course of the renormalization of the model to cancel the (ultra-violet)
divergences.

The only superficially divergent 1PI graph yields the {ollowing coatribution to the
‘self-energy’ function X(k,p) (in terms of the basic action)

dg 1
(2ﬂ.)d—: (s + DLE? 4 DTq2)(q2)(d»l)f2-—Ir
MapsT(1 ~e/2)T(e/2) s
—(47r)(d‘1)/2(DT)1"/2F((d— 1)/2)(s + DLk2)e/2 )

,(k,0) = ~k* 2t

where we have set the external transverse momentum equal to zero. . Due to the
super-renormalizability of the model, the one-loop expressions for the renormaliza-
tion constant Z, the anomalous dimension - of the longitudinal diffusion coeflicient
and the beta function extracted from (8), are perturbatively evact in the minimal
subtraction scheme, which is used here. It should be noted that the asymptotic
behaviour of the model is not determined by the coupling constant A, but by a to-
tally dimensionless expansion parameter w, which is dimensionless with respect to
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time, longitudinal and transverse coordinates, separately. From an inspection of the
perturbation expansion, we infer the following expression for the parameter u

u =X/ DTDY
In terms of this parameter, we obtain from (8)

Z=1_ a1 (9)

[

where we have introduced the quantity

2
K, =————
4= (am) T 472)

The renormalized parameter D becomes scale-dependent, which is described by the
quantity

8ln DU
F(u) = p 3
7

_ _Haln Z
0 A

=—-K, u (10

0

called the anomalous dimension of the parameter DV ie. the anomalous dimension
of the longitudinal diffusion coeflicient. In the definition (10) the subscript denotes
that the derivative is taken at fixed values of the bare parameters DY, Dk and ).
The asymptotic behaviour of the model is determined by the beta function, which is
of the form

a
ﬁ(u)zuﬁo

=ul-e—vy(w)] = u(—e+ K _ u). (11
Dimensional analysis yields for the renormalized Green function G the relation

'TI' = st 3
(D )1/2( T) d-1)/z¢dfz ° (12)

S’
d
=r
.-M
t::J
|
Z

G(t,z,y; 4, DY, DT, u) =

Together with the basic RG equation

g 53}
[“§T+7(”)DL@DL+ﬁ( } =0

which expresses the independence of the Green function G, of the arbitrary scaling
parameter p, the relation (12) leads to the equation

[Zt_
L

from which the asymptotic behaviour of the renormalized Green function G may be
inferred.

7()

“’(r_“)]c;':o

+y,. + A(u )n +d- (13)
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If the running coupling constant % is considered as a function of time, then the
exact expressions (10) and (11) yield the solution of equation (13) in a closed form:

G(1,z,yt~Y% u, D, DT, @)

. L T —_
Gtz yip, D2 D5 u) = 12K jufe + (1 - Ky_jufe)t==/2]1/2 {4

where ¥ and u are the first integrals of the equation (13):

T T
= (m) \/; (1)

=0l

[~}

2 1
= (I(d_l)1...(1....5/1{‘1_1“)1—5/2‘ (16)

Tha hatn fuinctine
v vvid luie ol

J‘:
5e
o
=%
3
]
>
71
=]
-
-
Ex

(1 aa two zeros (fixed points of the RG): the Gaussian fixed
point ug = 0 and the n ivial fixed point u* = /K ,_,, of which the former is
infrared stable for 1 < < (d —1)/2, and the latter for b < 1, as may be scen
from (16}, where @ — 0 in the limit ¢ — oo, when € = 2(1 - b) < 0, whereas
% — e/K,_,, when ¢ > 0. Therefore, the asymptotic behaviour for correlations
which decay rapidly enough corresponds to the usual diffusion, whereas for slowly
falling-off correlations the anomalous behaviour governed by the non-trivial fixed
point u* occurs. Corrections to the usual diffusion result at b = 1 logarithmic.

From the relations (14)-(16) it follows that in the transverse directions the diffu-
sion, as described by the the long-time behaviour of the mean-square displacement,
is normal, whereas for 0 < b < 1 the anomalous dimension of the longitudinal diffu-
sion coefficient has a non-trivial value: v = y(u*) = —e&, which, in particular, implies
that in the longitudinal direction the behaviour of the mean-square displacement is
superdiffusive: by definition («?(t)) = fdxdy G(t,z,y;u, DY, DV, «), and using
the equations (14)-(16) we arrive at the relation

(@2(0)) ~ 1172 = 278 (7

in whicrh tha valus nf 1 nower 2 — I ic narturhativaly avact in tha can
I wWialld Wi vaiue §if e power 2 [ \.all.l.uuullvvlJ CXact it the se

higher order terms of the e-expansion of the power of ¢ vanish identi
relation (17} determines the value of the exponent v, defined by (z2(¢)) ~
v=1-b/2. At b =1 the mean-square displacement grows as

(x2(1)) ~ tint.

At the limit b — (d — 1)/2, the value of the exponent v coincides with that for the
case of short-range correlations [7). This is not at all a trivial fact in the isotropic
case [3}, and here it occurs due to the super-renormalizability of the field theory.
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3. Diffusion in a unidirectional random field with longitudinal long-range correla-
tions

In the case of diffusion in a random unidirectional velocity field with long-range
correlations along the direction of the field flow, the overall setup of the problem is
the same as in the previous section. However, the random field 1> now also depends
on the longitudinal coordinate, and this has the important physical consequence that
the effective velocity field F' = e_i*(z,y) ceases to be divergenceless. The correlation
function has the asymptotic behaviour

(e, y) (', y) ~ f-ﬁi—]gl o — 2] 0o

and is assumed to be locally integrable with respect to the longitudinal coordinate « —
z’. Arguments similar to those of the preceding section allow the original correlation
function to be replaced by an effective one of the form

(1= 2a)2,8(y —

|CB wilZa

(W(e,y) 9z, y")) = 2X.8(x — 2" )o(y ~ ¥y ) B X Cy{z — 2,y — ¥') az

(¥(z,y)v(a',y") = y)EAOCQ(Q:-—m',y—y') 0<a<!t

[ Lo

Here, the long-range correlation function has been chosen such that in the limit
a — 0 we recover the correlation function of the original problem with unidirectional
convection [7]. Also, due to the factor 2 in the short-range correlation function, the
function C, is a continuous function of the parameter « in the limit « — %.

In the long -range case we obtain for the dimensions of the bare oouplmg constant
A the values &5 = 2, df = -2 - 2q, and df = 1 - d, and therefore d,, =
3 — 2a - d. In this case the model has the usual critical dimension d, = 3 - 2q, and
we choose e = 3 — 2e¢ — d. The random field + is now a function of ali the spatial
coordinates, therefore the longitudinal momentum integrals are also present. The
actual degree of divergence 6 now takes into account longitudinal momenta both in
the propagators and in the vertices (the latter factorize at the external legs), thus

§=d-31V(8-2a-d)-(d—1)N, - (d=1+4+2a)N,,. (18)
From here it follows that the model is renormalizable but not super-renormalizable:

it has an infinite set of superficially divergent graphs, since at the critical dimension
d = 3 - 2a the number of vertices V' disappears from the reiation (18). Moreover,

apart from the superficially linearly divergent self-energy graphs, the vertex graphs

corresponding to the 1Pl Green function T, also possess logarithmic divergences,
and the renormalization of the model requires two renormalization constants Z and
Z,, which enter the renormalized action in the following way

: 52
]dy(ly'dmd;r'1,[)6'2_1745+jdtd:c d’ylp[g—DT_(?___Z Dt o

1
S ST at ay? 22| %

a8 .
+ Zlfdtd:vdyso(t,m,y)w(w,y)ﬁso(hw,y)

»
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where we have introduced the renormalized parameters in the same fashion as in the
relation (7).

_ We choose the bare contribution to the 1P1 vertex function I' iy Lyoi kg (~p-q)
in the form Ty(s,k,p,q) = ik, where s is the Laplace variable, and k is the
longitudinal momentum flowing in the ¢ leg of the graph, and p and g are the
transverse momenta flowing in its ¢ and ¢ legs, respectively. In the limit of small
momenta, the 1-loop contribution to the vertex function is then (in terms of the basic
action)

ikAp*T(3/2—a)
- 2d-242a 7d-1/2T(q)

(s, k,0,0) =

1 2
x [/dldq (l?)-l/?—-a(s + Lz + DTq2)2 + O(k )

ikApfal(3/2 -« a)T((3~d—~2a)/2) 4
T gd-T2apd/2( DT)(d-1)/2( DL)l+a g(3-d-2a)/2 + O(k7)

from which we obtain

al'(3/2 —a)u

Zy =1+ 3/2—ag

and
ra/2—
71(“)=1-(T£,2_a—a)u+---- (19)

The 1-loop contribution to the self-energy is

_ AufT(3/2-a / k(k—=1)
2y(k,0) = —Samma d=172T(q) didq (By1/2=als + DLk — )2 + DTq?)?
_ (1 —2a)k2apufT(3/2 — a)((3 - d —2a)/2) O k3
- 9d— 2+2a.n-d/2(DT)(d 1)/2(DL)a g(8-d-2a)/2 +0O( )
from which
_ (1—~2a)1"(3/2—a)u
Z=1~ r3/2—ag
and
_ (1=2a)0(3/2 - a)u
‘}‘('U.) - 11'3]2““ (20)
The beta function now contains both ~s
B = uf-e + 2v;(u) = (1 + a)v(uw)] 210

and the fixed-point equation no longer fixes the anomalous dimension v = F(u") to
all orders in . From (19), (20) and (21) we obtain to the order O(u?)

(1 —a)(14+2a)(3/2~a)u

a3/2-a

8 =u|l—
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from which it follows that below the critical dimension d < d, = 3 — 2qa there is an
infrared stable fixed point of the RG: u* = 7#3/2-% /(1 — a}(1 + 2a)['(3/2 — a), at
which the anomalous dimension of the longitudinal diffusion coeflicient is equal to

(1 —2a)e

— EZ
I—aa+2a TOE)

4=

leading to superdiffusive behaviour, and at the critical dimension logarithmic correc-
tions to normal diffusion take place

(;cg_(t)} ~ $1H(1=2a)e /2(1—a)(1+2a) d<3—2a 0<a< % (22)
(ZEC0) ~ t(In $)(1-28)/(1-a)(1+24) d=3-2a 0<a<i (23)

whereas above the critical dimension the diffusion is normal. Expressions {22) and
(23) assume the values of the short-range unidirectional convection problem [7] in
the limit a — 0, and the anomalies vanish in the other interesting limit « — 1/2. In
the transverse dircctions the diffusion is normal regardless of the values of a, b and
d.

4. Diffusion in a random field with long-range longitudinal and transverse correla-
tions

The problem of diffusion in a unidirectional random velocity field with long-range
correlations in both longitudinal and transverse directions is described by the random
field (x,y) with the pair correlation function locally integrable with respéét to
longitudinal and transverse coordinates separately and with the asymptotic behaviour

1
|z — z/[20]y — 3|20

x—z|— o0 y—y|— oo.
[ ’

(¢($,y)¢($',‘y')) ~

For a < ; and b < (d ~1)/2 we replace, by analogy with the preceding treatment,
the original correlation function by an effective one of the form

(Y(z, )y, v')) = 2 Chlz — 2",y — o)
2BT(b)(1 - 2a)X,
(4m)d-D20((d - 1) /2 = b)|z — 2/ |22 |y — |7

0<a<i 0<b<(d=-1)/2.

We only consider here this correlation function, since the cascs corresponding to
other possible values of the exponents « and b reduce to the problems treated in the
preceding sections.

The dimensions of the bare coupling constant are dy = 2, dﬁ'o = -2« 2¢, and
d} = —2b, therefore dy, = 2(1 — a — b). Thus, there is a critical line « + b =1 in
the space of the parameters a and b, but no critical dimension of the position space
in this case. We define e = 2(1 —a — b). Power counting yields for the actual degree
of divergence the expression

f=d—(1—a—-b)V—(d=1)N,—(a+b)N,
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from which it follows that in the generic case there is a superficially linearly divergent
two-point function I, ; and a logarithmically divergent three-point function T, ;,, in
the model. At two dlmenswns the four-point function T . also has a degree of
divergence equal to zero indicating a possible logarithmic dwergence, However, at two
dimensions at least one of the conditions « <  and b < (d~1)/2 cannot be fulfilled,
consequently, in the effective correlation function the corresponding power function
has to be replaced by a delta function, and we return to one of the previous cases, in
which there are no difficulties with the higher order Green functions. Consequently,
there are only two effectively logarithmically divergent Green functions in the model,
and two renormalization constants suflice to make the model finite. The renormalized
action is

: 1 8 8* 52
= wo— [dydy deda’ wC,~! dtdzd DT ——ZDV
Sk 3N / ydy' dzde’ o 1f:+f T ywlat 5y 52| ¥

a .
+2, [dtdsdy ot 2,0) 0@, ) 5261 2,0).

Choosing the bare part of the IPI vertex function ' g _yo_ 1 g)y(—p-gq) N the form

Ty(s,k,p,q) = ik, we obtain the l-loop contribution to the vertex function at small
momenta (in terms of the basic action) in the form

ikAusT(3/2 — a)
2d-2+2a rd~1/2[(q)

I'y(s,k,0,0) = —

1 .2
X [./dldq ([2)*1/2—5((]2)(‘1_l)/z_b(s+ Dle_i_ DTq2)2 +O(k )

tkApfal'(b)T(3/2 - a)T {1 —a-10b)
T 9d=2%2a 7d/2[((d — 1) /2){ DT)¥(DL)i+e sl-a~b

+0(K) (29)

and the contribution to the self-energy in the form

AuT(3/2—a)

E,(k,0) = "2d..2+2a,rd-1/2[“(a)

k(k-1)
x /dtdq (12)172=a(g2)([d~1/2-3][s + DU(k - {)? + DTq?)?
_ (1 =2a)k?Apu T(L)T(3/2—a)T(1—a—1b)
- 2d-2+2a rd[2T((d — 1) /2)( DT )b(DL)agl-a-b

+O(kY.  @25)

In the relations (24) and (25) there arc two natural choices of the totally dimensionless
expansion parameter: A(DT)~#(D)*=2, which corresponds to the parameter p
of the dimension of the longitudinal momentum, and A{ DT)*~'{ D¥)~'=2, which
corresponds to u of the dimension of the transverse momentum. We choose the
latter possibility and define

A
(DT)i-e(pL)l+a’
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In terms of this parameter, the renormalization constants are

zlz1+“f“+--- z=1—(1—_%1-‘?-3‘-+ (26)
where we have defined
E= ['{1-a)l'(3/2—a)
= 2d+2a-37d[2T((d— 1)/2)
Equations (26) yield
v(u)=aEu+---  y(u)=—(1-2a)Eut- . @7

The beta function

8 = u[—e 4 27y, (uw) = (1 + a)y(u)] = u[—e+ (1 — a)(1 + 2a) Eu 4 O(u?)]

from which it follows that for ¢ + b < 1 there is an infrared stable fixed point of the
RG u* = /{1 —a)(1+ 2a}FE, at which the anomalous dimension of the longitudinal
diffusion coefficient is formally the same as in the preceding section (the parameter
e =2(1 —a — b) is different from that in the previous sections)

_ (1-2a)e
V= Ao za T OE)

leading to superdiffusive behaviour, and at the critical line « 4+ b = 1 logarithmic
corrections to normal diffusion occur:

(Iz(i)) —~ tl+(1-2a)z/2(l—a)(1+2a) at+ bl 0<a< %
0<b<(d=1)/2
(x2(2)) ~ t(in t)(1-20)/(1-a)(i420) a+b=1 0<a<3

[o T P g | 1Y Ia
VO E—1)js

whereas for ¢ + b > 1, @ < 1, and b < (d — 1)/2 the diffusion is normal, as is also
the case in the transverse directions for all values of e and b.

5. Conclusion

In this paper a renormalization group analysis has been carried out of three gen-
eralizations of the recently proposcd model of diffusion in a random unidirectional
velocity field [, 6]. The cases of: (i) a random field independent of the coordinate
along the velocity direction and long-range correlations in the transverse directions;
(i) a random field with long-range correlations in the direction of the velocity and
short-range correlations in the transverse directions; and (iii} a random ficld with
long-range correlations in both the longitudinal and transverse directions, have been
considered. The critical values of decay exponents of the correlation function and
the critical dimension have been determined, and the anomalous dimension of the
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longitudinal diffusion coefficient has been calculated in the leading order of the e ex-
pansion. In the case of a random field independent of the coordinate in the velocity
direction the results are perturbatively exact.

In all cases the anomalous behaviour is superdiffusive with the following long-time
asymptotics of the mean-square displacement of a tracer particle in the longitudinal
direction:

(i) for 0 < b < (d—1)/2, (x2(2)) ~ >4, if b < 1 and (z2(1)} ~ tIn ¢, when
b = 1, these results are exact in the e-expansion.

(i) For 0 < a < }, (x2(2)) ~ t1+(1-2a)¢/201-a)(1428) when ¢ < 3 — 24 and
(22(1)) ~ t(In t)(1-2e)/(1-a)(2+2a) jf g — 3 _ 24,

(i) For 0 < & < 1,0 < b < (d—1)/2, (z2(t)) ~ t1+{1-2a)s/A1=a)(1+2e) yhen
a+b<1and (x2(1)) ~ t(In t)(1-2e)/(1-a)(142a) jf g 4 p =],

For other values of the parameters a, b and d the diffusion in the b:ased direction

. PO Y R 4 Ten sthan tensncrnsna Tiasmdloeo ol al repar n-,- iy

is normal: \.z, (tj) ~ 1t In the transveise directions diffusion is normal i :Faraicss o1
the values of a, b and d.
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